Cloning from Github
This commit is contained in:
0
vibevoice/scripts/__init__.py
Normal file
0
vibevoice/scripts/__init__.py
Normal file
166
vibevoice/scripts/convert_nnscaler_checkpoint_to_transformers.py
Normal file
166
vibevoice/scripts/convert_nnscaler_checkpoint_to_transformers.py
Normal file
@@ -0,0 +1,166 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
import re
|
||||
import torch
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
from vibevoice.modular.configuration_vibevoice import (
|
||||
VibeVoiceConfig
|
||||
)
|
||||
from vibevoice.modular.modeling_vibevoice import VibeVoiceForConditionalGeneration
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
def convert_vibevoice_nnscaler_checkpoint_to_hf(
|
||||
checkpoint_path: str,
|
||||
pytorch_dump_folder_path: str,
|
||||
config_path: str = None,
|
||||
):
|
||||
"""
|
||||
Convert a nnscaler VibeVoice checkpoint to HuggingFace format.
|
||||
Supports both regular checkpoints and tensor parallel checkpoints.
|
||||
"""
|
||||
|
||||
# Load regular checkpoint
|
||||
logger.info(f"Loading regular checkpoint from {checkpoint_path}")
|
||||
checkpoint = torch.load(checkpoint_path, map_location="cpu") # ['model', 'optimizer', 'lr_scheduler', 'train_status', 'train_args', 'rng_states', 'nnscaler', 'dataloader']
|
||||
|
||||
# config = checkpoint['train_args']
|
||||
init_config_name = checkpoint['train_args']['vars']['model_args']['config_path']['relative_path']
|
||||
pretrained_name = checkpoint['train_args']['vars']['data_args']['tokenizer_path']
|
||||
|
||||
init_config_path = Path(__file__).parent.parent / 'configs' / init_config_name.split('/')[-1]
|
||||
if init_config_path.exists():
|
||||
logger.info(f"Loading initial config from {init_config_path}")
|
||||
with open(init_config_path, 'r') as f:
|
||||
init_config = json.load(f)
|
||||
else:
|
||||
raise FileNotFoundError(f"Initial config file {init_config_path} not found. Please provide a valid path.")
|
||||
|
||||
tie_word_embeddings = init_config['decoder_config'].get('tie_word_embeddings', True)
|
||||
logger.info(f"Tie word embeddings: {tie_word_embeddings}")
|
||||
|
||||
init_config['decoder_config']['use_cache'] = True
|
||||
config = VibeVoiceConfig(**init_config, tie_word_embeddings=tie_word_embeddings)
|
||||
|
||||
# # Extract the model state dict
|
||||
model_state_dict = {k.replace('model.model.', 'model.'): v for k, v in checkpoint["model"].items() if k.startswith('model.model.')}
|
||||
if not tie_word_embeddings and 'model.lm_head.weight' in checkpoint["model"].keys():
|
||||
# If not tying weights, we need to add the lm_head weight separately
|
||||
model_state_dict['lm_head.weight'] = checkpoint["model"]['model.lm_head.weight']
|
||||
|
||||
# Override with provided config if available
|
||||
if config_path:
|
||||
logger.info(f"Loading config from {config_path}")
|
||||
with open(config_path, 'r') as f:
|
||||
config_dict = json.load(f)
|
||||
config = VibeVoiceConfig.from_dict(config_dict)
|
||||
|
||||
# Set the default dtype to bfloat16 before creating the model
|
||||
original_dtype = torch.get_default_dtype()
|
||||
torch.set_default_dtype(torch.bfloat16)
|
||||
|
||||
# Create the HuggingFace model
|
||||
logger.info("Creating HuggingFace VibeVoiceForConditionalGeneration model")
|
||||
model = VibeVoiceForConditionalGeneration(config)
|
||||
|
||||
# Restore original dtype
|
||||
torch.set_default_dtype(original_dtype)
|
||||
|
||||
# Load the state dict
|
||||
logger.info("Loading weights into model")
|
||||
missing_keys, unexpected_keys = model.load_state_dict(model_state_dict, strict=False)
|
||||
|
||||
if missing_keys:
|
||||
logger.warning(f"Missing keys: {missing_keys}")
|
||||
if unexpected_keys:
|
||||
logger.warning(f"Unexpected keys: {unexpected_keys}")
|
||||
|
||||
# Create output directory
|
||||
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
|
||||
|
||||
# Save the model and config
|
||||
logger.info(f"Saving model to {pytorch_dump_folder_path}")
|
||||
|
||||
# Save config
|
||||
config.save_pretrained(pytorch_dump_folder_path)
|
||||
|
||||
# Save VibeVoiceProcessor configuration
|
||||
logger.info("Saving VibeVoiceProcessor configuration")
|
||||
processor_config = {
|
||||
"processor_class": "VibeVoiceProcessor",
|
||||
"speech_tok_compress_ratio": 3200,
|
||||
"db_normalize": True,
|
||||
# Audio processor configuration
|
||||
"audio_processor": {
|
||||
"feature_extractor_type": "VibeVoiceTokenizerProcessor",
|
||||
"sampling_rate": 24000,
|
||||
"normalize_audio": True,
|
||||
"target_dB_FS": -25,
|
||||
"eps": 1e-6,
|
||||
},
|
||||
"language_model_pretrained_name": pretrained_name,
|
||||
}
|
||||
|
||||
processor_config_path = os.path.join(pytorch_dump_folder_path, "preprocessor_config.json")
|
||||
with open(processor_config_path, 'w') as f:
|
||||
json.dump(processor_config, f, indent=2)
|
||||
logger.info(f"Saved processor config to {processor_config_path}")
|
||||
|
||||
# Save model with sharding
|
||||
# save_pretrained handles tied weights automatically
|
||||
logger.info("Saving model weights with sharding...")
|
||||
model.save_pretrained(
|
||||
pytorch_dump_folder_path,
|
||||
max_shard_size="2GB", # Set maximum size for each shard
|
||||
safe_serialization=True # Ensure saving in .safetensors format
|
||||
)
|
||||
logger.info(f"Model weights saved to {pytorch_dump_folder_path}")
|
||||
|
||||
logger.info("Conversion complete!")
|
||||
|
||||
# Verify the saved model can be loaded
|
||||
logger.info("Verifying saved model...")
|
||||
loaded_model = VibeVoiceForConditionalGeneration.from_pretrained(pytorch_dump_folder_path)
|
||||
logger.info("Model successfully loaded from saved checkpoint!")
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--nnscaler_checkpoint_path",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the fairseq checkpoint (.pt file). For tensor parallel checkpoints, "
|
||||
"provide any one of the part files (e.g., checkpoint_1_5000-model_part-0.pt), "
|
||||
"and the script will automatically detect and merge all parts.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pytorch_dump_folder_path",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the output PyTorch model directory",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--config_path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Optional path to a config JSON file to override extracted config",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
convert_vibevoice_nnscaler_checkpoint_to_hf(
|
||||
args.nnscaler_checkpoint_path,
|
||||
args.pytorch_dump_folder_path,
|
||||
args.config_path,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user